3.1.21 \(\int \frac {\tan ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx\) [21]

3.1.21.1 Optimal result
3.1.21.2 Mathematica [A] (verified)
3.1.21.3 Rubi [A] (warning: unable to verify)
3.1.21.4 Maple [F]
3.1.21.5 Fricas [A] (verification not implemented)
3.1.21.6 Sympy [F]
3.1.21.7 Maxima [F(-1)]
3.1.21.8 Giac [F(-1)]
3.1.21.9 Mupad [F(-1)]

3.1.21.1 Optimal result

Integrand size = 35, antiderivative size = 249 \[ \int \frac {\tan ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx=-\frac {\text {arctanh}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 \sqrt {a} e}-\frac {b \text {arctanh}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{4 a^{3/2} e}+\frac {\text {arctanh}\left (\frac {2 a-b+(b-2 c) \cot ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 \sqrt {a-b+c} e}+\frac {\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan ^2(d+e x)}{2 a e} \]

output
-1/4*b*arctanh(1/2*(2*a+b*cot(e*x+d)^2)/a^(1/2)/(a+b*cot(e*x+d)^2+c*cot(e* 
x+d)^4)^(1/2))/a^(3/2)/e-1/2*arctanh(1/2*(2*a+b*cot(e*x+d)^2)/a^(1/2)/(a+b 
*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2))/e/a^(1/2)+1/2*arctanh(1/2*(2*a-b+(b-2 
*c)*cot(e*x+d)^2)/(a-b+c)^(1/2)/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2))/e 
/(a-b+c)^(1/2)+1/2*(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)*tan(e*x+d)^2/a/ 
e
 
3.1.21.2 Mathematica [A] (verified)

Time = 1.38 (sec) , antiderivative size = 258, normalized size of antiderivative = 1.04 \[ \int \frac {\tan ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx=\frac {\cot ^2(d+e x) \sqrt {c+b \tan ^2(d+e x)+a \tan ^4(d+e x)} \left (-\left ((2 a+b) \sqrt {a-b+c} \text {arctanh}\left (\frac {b+2 a \tan ^2(d+e x)}{2 \sqrt {a} \sqrt {c+b \tan ^2(d+e x)+a \tan ^4(d+e x)}}\right )\right )+2 \sqrt {a} \left (a \text {arctanh}\left (\frac {b-2 c+(2 a-b) \tan ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {c+b \tan ^2(d+e x)+a \tan ^4(d+e x)}}\right )+\sqrt {a-b+c} \sqrt {c+b \tan ^2(d+e x)+a \tan ^4(d+e x)}\right )\right )}{4 a^{3/2} \sqrt {a-b+c} e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \]

input
Integrate[Tan[d + e*x]^3/Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4],x]
 
output
(Cot[d + e*x]^2*Sqrt[c + b*Tan[d + e*x]^2 + a*Tan[d + e*x]^4]*(-((2*a + b) 
*Sqrt[a - b + c]*ArcTanh[(b + 2*a*Tan[d + e*x]^2)/(2*Sqrt[a]*Sqrt[c + b*Ta 
n[d + e*x]^2 + a*Tan[d + e*x]^4])]) + 2*Sqrt[a]*(a*ArcTanh[(b - 2*c + (2*a 
 - b)*Tan[d + e*x]^2)/(2*Sqrt[a - b + c]*Sqrt[c + b*Tan[d + e*x]^2 + a*Tan 
[d + e*x]^4])] + Sqrt[a - b + c]*Sqrt[c + b*Tan[d + e*x]^2 + a*Tan[d + e*x 
]^4])))/(4*a^(3/2)*Sqrt[a - b + c]*e*Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + 
 e*x]^4])
 
3.1.21.3 Rubi [A] (warning: unable to verify)

Time = 0.51 (sec) , antiderivative size = 235, normalized size of antiderivative = 0.94, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3042, 4184, 1578, 1289, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cot (d+e x)^3 \sqrt {a+b \cot (d+e x)^2+c \cot (d+e x)^4}}dx\)

\(\Big \downarrow \) 4184

\(\displaystyle -\frac {\int \frac {\tan ^3(d+e x)}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 1578

\(\displaystyle -\frac {\int \frac {\tan ^2(d+e x)}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 1289

\(\displaystyle -\frac {\int \left (\frac {\tan ^2(d+e x)}{\sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}-\frac {\tan (d+e x)}{\sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}+\frac {1}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}\right )d\cot ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\frac {b \text {arctanh}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 a^{3/2}}+\frac {\text {arctanh}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{\sqrt {a}}-\frac {\text {arctanh}\left (\frac {2 a+(b-2 c) \cot ^2(d+e x)-b}{2 \sqrt {a-b+c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{\sqrt {a-b+c}}-\frac {\tan (d+e x) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}{a}}{2 e}\)

input
Int[Tan[d + e*x]^3/Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4],x]
 
output
-1/2*(ArcTanh[(2*a + b*Cot[d + e*x]^2)/(2*Sqrt[a]*Sqrt[a + b*Cot[d + e*x]^ 
2 + c*Cot[d + e*x]^4])]/Sqrt[a] + (b*ArcTanh[(2*a + b*Cot[d + e*x]^2)/(2*S 
qrt[a]*Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4])])/(2*a^(3/2)) - ArcT 
anh[(2*a - b + (b - 2*c)*Cot[d + e*x]^2)/(2*Sqrt[a - b + c]*Sqrt[a + b*Cot 
[d + e*x]^2 + c*Cot[d + e*x]^4])]/Sqrt[a - b + c] - (Sqrt[a + b*Cot[d + e* 
x]^2 + c*Cot[d + e*x]^4]*Tan[d + e*x])/a)/e
 

3.1.21.3.1 Defintions of rubi rules used

rule 1289
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x 
_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*(f + 
 g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && ( 
IntegerQ[p] || (ILtQ[m, 0] && ILtQ[n, 0]))
 

rule 1578
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_ 
)^4)^(p_.), x_Symbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a 
+ b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && Int 
egerQ[(m - 1)/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4184
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*( 
f_.))^(n_.) + (c_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] 
 :> Simp[-f/e   Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)), 
x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[ 
n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
 
3.1.21.4 Maple [F]

\[\int \frac {\tan \left (e x +d \right )^{3}}{\sqrt {a +b \cot \left (e x +d \right )^{2}+c \cot \left (e x +d \right )^{4}}}d x\]

input
int(tan(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2),x)
 
output
int(tan(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2),x)
 
3.1.21.5 Fricas [A] (verification not implemented)

Time = 1.38 (sec) , antiderivative size = 1444, normalized size of antiderivative = 5.80 \[ \int \frac {\tan ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx=\text {Too large to display} \]

input
integrate(tan(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2),x, algorith 
m="fricas")
 
output
[1/8*(2*sqrt(a - b + c)*a^2*log(((8*a^2 - 8*a*b + b^2 + 4*a*c)*tan(e*x + d 
)^4 + 2*(4*a*b - 3*b^2 - 4*(a - b)*c)*tan(e*x + d)^2 + b^2 + 4*(a - 2*b)*c 
 + 8*c^2 + 4*((2*a - b)*tan(e*x + d)^4 + (b - 2*c)*tan(e*x + d)^2)*sqrt(a 
- b + c)*sqrt((a*tan(e*x + d)^4 + b*tan(e*x + d)^2 + c)/tan(e*x + d)^4))/( 
tan(e*x + d)^4 + 2*tan(e*x + d)^2 + 1)) + 4*(a^2 - a*b + a*c)*sqrt((a*tan( 
e*x + d)^4 + b*tan(e*x + d)^2 + c)/tan(e*x + d)^4)*tan(e*x + d)^2 + (2*a^2 
 - a*b - b^2 + (2*a + b)*c)*sqrt(a)*log(8*a^2*tan(e*x + d)^4 + 8*a*b*tan(e 
*x + d)^2 + b^2 + 4*a*c - 4*(2*a*tan(e*x + d)^4 + b*tan(e*x + d)^2)*sqrt(a 
)*sqrt((a*tan(e*x + d)^4 + b*tan(e*x + d)^2 + c)/tan(e*x + d)^4)))/((a^3 - 
 a^2*b + a^2*c)*e), 1/4*(sqrt(a - b + c)*a^2*log(((8*a^2 - 8*a*b + b^2 + 4 
*a*c)*tan(e*x + d)^4 + 2*(4*a*b - 3*b^2 - 4*(a - b)*c)*tan(e*x + d)^2 + b^ 
2 + 4*(a - 2*b)*c + 8*c^2 + 4*((2*a - b)*tan(e*x + d)^4 + (b - 2*c)*tan(e* 
x + d)^2)*sqrt(a - b + c)*sqrt((a*tan(e*x + d)^4 + b*tan(e*x + d)^2 + c)/t 
an(e*x + d)^4))/(tan(e*x + d)^4 + 2*tan(e*x + d)^2 + 1)) + 2*(a^2 - a*b + 
a*c)*sqrt((a*tan(e*x + d)^4 + b*tan(e*x + d)^2 + c)/tan(e*x + d)^4)*tan(e* 
x + d)^2 + (2*a^2 - a*b - b^2 + (2*a + b)*c)*sqrt(-a)*arctan(1/2*(2*a*tan( 
e*x + d)^4 + b*tan(e*x + d)^2)*sqrt(-a)*sqrt((a*tan(e*x + d)^4 + b*tan(e*x 
 + d)^2 + c)/tan(e*x + d)^4)/(a^2*tan(e*x + d)^4 + a*b*tan(e*x + d)^2 + a* 
c)))/((a^3 - a^2*b + a^2*c)*e), 1/8*(4*a^2*sqrt(-a + b - c)*arctan(-1/2*(( 
2*a - b)*tan(e*x + d)^4 + (b - 2*c)*tan(e*x + d)^2)*sqrt(-a + b - c)*sq...
 
3.1.21.6 Sympy [F]

\[ \int \frac {\tan ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx=\int \frac {\tan ^{3}{\left (d + e x \right )}}{\sqrt {a + b \cot ^{2}{\left (d + e x \right )} + c \cot ^{4}{\left (d + e x \right )}}}\, dx \]

input
integrate(tan(e*x+d)**3/(a+b*cot(e*x+d)**2+c*cot(e*x+d)**4)**(1/2),x)
 
output
Integral(tan(d + e*x)**3/sqrt(a + b*cot(d + e*x)**2 + c*cot(d + e*x)**4), 
x)
 
3.1.21.7 Maxima [F(-1)]

Timed out. \[ \int \frac {\tan ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx=\text {Timed out} \]

input
integrate(tan(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2),x, algorith 
m="maxima")
 
output
Timed out
 
3.1.21.8 Giac [F(-1)]

Timed out. \[ \int \frac {\tan ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx=\text {Timed out} \]

input
integrate(tan(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2),x, algorith 
m="giac")
 
output
Timed out
 
3.1.21.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx=\int \frac {{\mathrm {tan}\left (d+e\,x\right )}^3}{\sqrt {c\,{\mathrm {cot}\left (d+e\,x\right )}^4+b\,{\mathrm {cot}\left (d+e\,x\right )}^2+a}} \,d x \]

input
int(tan(d + e*x)^3/(a + b*cot(d + e*x)^2 + c*cot(d + e*x)^4)^(1/2),x)
 
output
int(tan(d + e*x)^3/(a + b*cot(d + e*x)^2 + c*cot(d + e*x)^4)^(1/2), x)